Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Yonsei Medical Journal ; : 233-242, 2023.
Article in English | WPRIM | ID: wpr-977432

ABSTRACT

Purpose@#Glioblastoma (GBM) is an intractable disease for which various treatments have been attempted, but with little effect.This study aimed to measure the effect of photodynamic therapy (PDT) and sonodynamic therapy (SDT), which are currently being used to treat brain tumors, as well as sono-photodynamic therapy (SPDT), which is the combination of these two. @*Materials and Methods@#Four groups of Sprague-Dawley rats were injected with C6 glioma cells in a cortical region and treated with PDT, SDT, and SPDT. Gd-MRI was monitored weekly and 18F-FDG-PET the day before and 1 week after the treatment. The acoustic power used during sonication was 5.5 W/cm2 using a 0.5-MHz single-element transducer. The 633-nm laser was illuminated at 100 J/cm2 . Oxidative stress and apoptosis markers were evaluated 3 days after treatment using immunohistochemistry (IHC): 4-HNE, 8-OhdG, and Caspase-3. @*Results@#A decrease in tumor volume was observed in MRI imaging 12 days after the treatment in the PDT group (p<0.05), but the SDT group showed a slight increase compared to the 5-Ala group. The high expression rates of reactive oxygen species-related factors, such as 8-OhdG (p<0.001) and Caspase-3 (p<0.001), were observed in the SPDT group compared to other groups in IHC. @*Conclusion@#Our findings show that light with sensitizers can inhibit GBM growth, but not ultrasound. Although SPDT did not show the combined effect in MRI, high oxidative stress was observed in IHC. Further studies are needed to investigate the safety parameters to apply ultrasound in GBM.

2.
Journal of Korean Neurosurgical Society ; : 172-182, 2023.
Article in English | WPRIM | ID: wpr-967514

ABSTRACT

Objective@#: The blood-brain barrier (BBB) is an obstacle for molecules to pass through from blood to the brain. Focused ultrasound is a new method which temporarily opens the BBB, which makes pharmaceutical delivery or removal of neurodegenerative proteins possible. This study was demonstrated to review our BBB opening procedure with magnetic resonance guided images and find specific patterns in the BBB opening. @*Methods@#: In this study, we reviewed the procedures and results of two clinical studies on BBB opening using focused ultrasound regarding its safety and clinical efficacy. Magnetic resonance images were also reviewed to discover any specific findings. @*Results@#: Two clinical trials showed clinical benefits. All clinical trials demonstrated safe BBB opening, with no specific side effects. Magnetic resonance imaging showed temporary T1 contrast enhancement in the sonication area, verifying the BBB opening. Several low-signal intensity spots were observed in the T2 susceptibility-weighted angiography images, which were also reversible and temporary. Although these spots can be considered as microbleeding, evidence suggests these are not ordinary microbleeding but an indicator for adequate BBB opening. @*Conclusion@#: Magnetic resonance images proved safe and efficient BBB opening in humans, using focused ultrasound.

3.
Yonsei Medical Journal ; : 166-172, 2022.
Article in English | WPRIM | ID: wpr-919600

ABSTRACT

Purpose@#Globus pallidus pars interna (GPi) has become an established target for deep brain stimulation (DBS) in dystonia. Previous studies suggest that targeting the ventralis oralis (Vo) complex nucleus improves dystonic tremor or even focal dystonia. Research has also demonstrated that multi-target DBS shows some benefits over single target DBS. In this study, we reviewed patients who had undergone unilateral DBS targeting the GPi and Vo. @*Materials and Methods@#Five patients diagnosed with medically refractory upper extremity dystonia (focal or segmental) underwent DBS. Two DBS electrodes each were inserted unilaterally targeting the ipsilateral GPi and Vo. Clinical outcomes were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Disability Rating Scale. @*Results@#BFMDRS scores decreased by 55% at 1-month, 56% at 3-month, 59% at 6-month, and 64% at 12-month follow up. Disability Rating Scale scores decreased 41% at 1-month, 47% at 3-month, 50% at 6-month, and 60% at 12-month follow up. At 1 month after surgery, stimulating both targets improved clinical scores better than targeting GPi or Vo alone. @*Conclusion@#Unilateral thalamic and pallidal dual electrode DBS may be as effective or even superior to DBS of a single target for dystonia. Although the number of patients was small, our results reflected favorable clinical outcomes.

4.
Journal of Clinical Neurology ; : 688-695, 2020.
Article | WPRIM | ID: wpr-833659

ABSTRACT

Background@#and Purpose: Hippocampal atrophy (HA) resulting from a central nervous system (CNS) infection might be a relevant lesion responsible for the clinical characteristics of medial temporal lobe epilepsy. @*Methods@#The clinical characteristics of 54 patients with CNS infection-related medial temporal lobe epilepsy (MTLE) with isolated HA (CNS infection group) and 155 patients with conventional MTLE with HA (conventional group) were compared retrospectively. CNS infection alone and bilateral involvement of the HA were analyzed as prognostic factors, in addition to the detailed clinical characteristics, such as limbic aura and the presence and proportion of each type of automatism, between the two groups, and both medical and surgical prognoses were separately considered. A logistic regression analysis was performed. @*Results@#A statistical analysis including all clinical factors, including CNS infection with bilateral HA, did not reveal significant differences between the two groups. An analysis comparing the prognosis of the two groups based on good or poor prognosis among patients who received medical treatment and good or poor outcomes among patients who received surgical treatment did not produce significant differences. @*Conclusions@#In addition to bilateral HA, CNS infection alone was not a poor prognostic factor for the CNS infection-related epilepsy with HA group compared with the conventional MTLE with HA group. Based on these negative results, HA is a plausible and relevant lesion with similar clinical characteristics to HA in patients with conventional MTLE. Therefore, CNS infection-related MTLE with isolated HA might represent another subtype of MTLE with HA with a different etiology.

6.
Journal of Korean Medical Science ; : e24-2019.
Article in English | WPRIM | ID: wpr-719566

ABSTRACT

BACKGROUND: Recently, carbon fibers have been utilized to develop a depth-type microelectrode array for chronic neural recording. Since the diameter of carbon fibers is smaller than the conventional electrodes made of metal wires or microfabricated silicon, the carbon fiber electrodes showed an improved capability for chronic neural recording with less tissue damages. However, the carbon fiber based microelectrodes have a limitation of short insertion depth due to a low stiffness. METHODS: We proposed a carbon fiber based microelectrode array embedded with a mechanical support structure to facilitate the penetration into the deeper brain. The support is made of biodegradable silk fibroin to reduce the reactive tissue responses. The 4-channel carbon fiber based microelectrode arrays were fabricated and accessed in terms of electrochemical impedance, recording capability for 1-month implantation in rat hippocampi. The electrodes with tungsten supports were fabricated and tested as a control group. Immunohistochemical analysis was performed to identify the reactive glial responses. RESULTS: The carbon fiber based electrode arrays with silk supports showed about 2-fold impedance increase 2 weeks after implantation while the number of active electrodes decreased simultaneously. However, after 1 month, the electrode impedance decreased back to its initial value and the percentage of active electrodes also increased above 70%. Immunohistochemical staining clearly showed that the electrodes with silk supports induced less reactive glial responses than that with tungsten supports. CONCLUSION: The proposed carbon fiber based microelectrode array is expected to be used for long-term in vivo neural recording from deep brain regions with the minimized reactive tissue response.


Subject(s)
Animals , Rats , Brain , Carbon , Electric Impedance , Electrodes , Fibroins , Microelectrodes , Silicon , Silk , Tungsten
7.
Journal of Korean Neurosurgical Society ; : 712-722, 2019.
Article in English | WPRIM | ID: wpr-788815

ABSTRACT

OBJECTIVE: Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures.METHODS: For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls.RESULTS: Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05).CONCLUSION: This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.


Subject(s)
Humans , Acoustics , Brain , Cadaver , High-Intensity Focused Ultrasound Ablation , Incidence , Pallidotomy , Retrospective Studies , Skull , Sonication , Ultrasonics , Ultrasonography
8.
Journal of Korean Neurosurgical Society ; : 712-722, 2019.
Article in English | WPRIM | ID: wpr-765389

ABSTRACT

OBJECTIVE: Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures. METHODS: For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls. RESULTS: Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05). CONCLUSION: This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.


Subject(s)
Humans , Acoustics , Brain , Cadaver , High-Intensity Focused Ultrasound Ablation , Incidence , Pallidotomy , Retrospective Studies , Skull , Sonication , Ultrasonics , Ultrasonography
9.
Yonsei Medical Journal ; : 768-773, 2019.
Article in English | WPRIM | ID: wpr-762108

ABSTRACT

PURPOSE: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has become a standard treatment for medically intractable essential tremor (ET). Skull density ratio (SDR) and skull volume in patients with ET are currently considered useful indicators of the successful application of MRgFUS. We compared the clinical outcomes of MRgFUS thalamotomy with SDR above 0.4 and 0.45. We also described patterns of SDR and skull volume in Korean patients with ET who were eligible to be screened for MRgFUS. MATERIALS AND METHODS: In screening 318 ET patients, we evaluated patterns of skull density and skull volume according to age and sex. Fifty patients with ET were treated with MRgFUS. We investigated the effects of SDR and skull volume on treatment parameters and the outcomes of ET. RESULTS: The mean SDR of the 318 ET patients was 0.45±0.11, and that for skull volume was 315.74±40.95 cm³. The male patients had a higher SDR than female patients (p=0.047). Skull volume significantly decreased with aging. SDR and skull volume exhibited a linear negative relationship. Among therapeutic parameters, maximal temperature was positively related to SDR, while sonication number was not related to either SDR or skull volume. Tremor outcome was also not related to SDR or skull volume. CONCLUSION: SDR varied widely from 0.11 to 0.73, and men had a higher SDR. Therapeutic parameters and clinical outcomes were not affected by SDR or skull volume.


Subject(s)
Female , Humans , Male , Aging , Essential Tremor , Mass Screening , Skull , Sonication , Tremor , Ultrasonography
10.
Journal of Korean Medical Science ; : e279-2018.
Article in English | WPRIM | ID: wpr-717596

ABSTRACT

Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.


Subject(s)
Humans , Acoustics , Alzheimer Disease , Blood-Brain Barrier , Brain Neoplasms , Depressive Disorder, Major , Epilepsy , Essential Tremor , High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging , Nervous System Diseases , Neuralgia , Neurosurgery , Neurosurgical Procedures , Obsessive-Compulsive Disorder , Parkinson Disease , Skull , Thermometry , Transducers , Ultrasonography
11.
Journal of Korean Neurosurgical Society ; : 427-433, 2018.
Article in English | WPRIM | ID: wpr-788709

ABSTRACT

Obsessive compulsive disorder is a debilitating condition characterized by recurrent obsessive thoughts and compulsive reactions. A great portion of the obsessive compulsive disorder (OCD) patients are managed successfully with psychiatric treatment such as selective serotonin-reuptake inhibitor and cognitive behavioral psychotherapy, but more than 10% of patients are remained as non-responder who needs neurosurgical treatments. These patients are potential candidates for the neurosurgical management. There had been various kind of operation, lesioning such as leucotomy or cingulotomy or capsulotomy or limbic leucotomy, and with advent of stereotaxic approach and technical advances, deep brain stimulation was more chosen by neurosurgeon due to its characteristic of reversibility and adjustability. Gamma knife radiosurgery are also applied to make lesion targeting based on magnetic resonance (MR) imaging, but the complication of adverse radiation effect is not predictable. In the neurosurgical field, MR guided focused ultrasound has advantage of less invasiveness, real-time monitored procedure which is now growing to attempt to apply for various brain disorder. In this review, the neurosurgical treatment modalities for the treatment of OCD will be briefly reviewed and the current state of MR guided focused ultrasound for OCD will be suggested.


Subject(s)
Humans , Brain Diseases , Deep Brain Stimulation , High-Intensity Focused Ultrasound Ablation , Neurosurgeons , Obsessive-Compulsive Disorder , Psychosurgery , Psychotherapy , Radiation Effects , Radiosurgery , Ultrasonography
12.
Journal of Korean Neurosurgical Society ; : 427-433, 2018.
Article in English | WPRIM | ID: wpr-765279

ABSTRACT

Obsessive compulsive disorder is a debilitating condition characterized by recurrent obsessive thoughts and compulsive reactions. A great portion of the obsessive compulsive disorder (OCD) patients are managed successfully with psychiatric treatment such as selective serotonin-reuptake inhibitor and cognitive behavioral psychotherapy, but more than 10% of patients are remained as non-responder who needs neurosurgical treatments. These patients are potential candidates for the neurosurgical management. There had been various kind of operation, lesioning such as leucotomy or cingulotomy or capsulotomy or limbic leucotomy, and with advent of stereotaxic approach and technical advances, deep brain stimulation was more chosen by neurosurgeon due to its characteristic of reversibility and adjustability. Gamma knife radiosurgery are also applied to make lesion targeting based on magnetic resonance (MR) imaging, but the complication of adverse radiation effect is not predictable. In the neurosurgical field, MR guided focused ultrasound has advantage of less invasiveness, real-time monitored procedure which is now growing to attempt to apply for various brain disorder. In this review, the neurosurgical treatment modalities for the treatment of OCD will be briefly reviewed and the current state of MR guided focused ultrasound for OCD will be suggested.


Subject(s)
Humans , Brain Diseases , Deep Brain Stimulation , High-Intensity Focused Ultrasound Ablation , Neurosurgeons , Obsessive-Compulsive Disorder , Psychosurgery , Psychotherapy , Radiation Effects , Radiosurgery , Ultrasonography
13.
Yonsei Medical Journal ; : 406-415, 2018.
Article in English | WPRIM | ID: wpr-714669

ABSTRACT

PURPOSE: Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. MATERIALS AND METHODS: Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. RESULTS: Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. CONCLUSION: Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.


Subject(s)
Animals , Humans , Male , Rats , Acetylcholinesterase , Choline O-Acetyltransferase , Cholinergic Neurons , Dementia , Hippocampus , Injections, Intraventricular , Mesenchymal Stem Cells , Methods , Microglia , Models, Animal , Negotiating , Placenta , Rats, Sprague-Dawley , Stem Cells , Therapeutic Uses , Water
14.
Korean Journal of Otolaryngology - Head and Neck Surgery ; : 235-241, 2018.
Article in English | WPRIM | ID: wpr-714561

ABSTRACT

BACKGROUND AND OBJECTIVES: Auditory brainstem implantation (ABI) is another option for hearing rehabilitation in non-neurofibromatosis type 2 patients who cannot undergo cochlear implantation (CI). However, the average performance of ABI is worse than that of CI. We analyzed the psycho-electrical parameters of each electrode and psycho-acoustic response to different frequency sounds in nontumor patients with ABI. SUBJECTS AND METHOD: Sixteen patients with ABI from July 2008 to May 2013 were included in the study. They were followed up for 4 to 56 months. Among them, 12 were prelingual deaf with a narrow internal auditory canal or cochlear ossification. The remaining four were post-lingual deaf adults with severely ossified cochleae. We analyzed the electrical parameters [impedance, threshold level (T level), and dynamic range] of each of the 12 electrodes. We also evaluated the sound field pure-tone threshold, Ling 6 sound detection-identification test (Ling 6 test), and pitch ranking data of these patients. RESULTS: The impedance, T level, and dynamic range did not significantly differ among electrodes. However, the pure-tone threshold to sound field stimulation was elevated in the high tone area, where more variables were found than in the low frequency area. Patients could not identify /S/ and /Sh/ sounds in the Ling 6 test. The mean T level and the dynamic range of the three highest pitch-perceiving electrodes in each patient was higher and narrower, respectively, than those of the three lowest pitch-perceiving electrodes. CONCLUSION: The nontumor patients with ABI have difficulty perceiving high pitch sound. More sophisticated penetrating type electrodes and, if possible, bimodal stimulation with CI, could be considered.


Subject(s)
Adult , Humans , Auditory Brain Stem Implantation , Auditory Brain Stem Implants , Cochlea , Cochlear Implantation , Cochlear Implants , Electric Impedance , Electrodes , Hearing , Methods , Rehabilitation
15.
Biomedical Engineering Letters ; (4): 107-114, 2017.
Article in English | WPRIM | ID: wpr-655915

ABSTRACT

The concept of focused ultrasound (FUS) and its application in the field of medicine have been suggested since the mid-20th century. However, the clinical applications of this technique in central nervous system (CNS) diseases have been extremely limited because the skull inhibits efficient energy transmission. Therefore, early application of FUS treatment was only performed in patients who had already undergone invasive procedures including craniectomy and burr hole trephination. In the 1990s, the phased array technique was developed and this enabled the focus of ultrasonic energy through the skull, and in conjunction with another technique, magnetic resonance thermal monitoring, the possibility of applying FUS in the CNS was further strengthened. The first clinical trial using FUS treatment for CNS diseases was performed in the early 21(st) century in patients with glioblastoma, which consists of highly malignant primary brain tumors. However, this trial resulted in a failure to make lesions in the tumors. Various causes were suggested for this outcome including different acoustic impedances across heterogeneous intracranial tissue (not only brain tissue, but also fibrous or tumor tissue). To avoid the influence of this factor, the targets for FUS treatment were shifted to functional diseases such as essential tremor, Parkinson's disease, and psychiatric disease, which usually occur in normal brain structures. The first trial for functional diseases was started in 2010, and the results were successful as accurate lesions were made in the target area. Nowadays, the indication of FUS treatment for functional CNS diseases is gradually widening, and many trials using the FUS technique are reporting good results. In addition to the lesioning technique using high intensity FUS treatment, the possibility of clinical application of low intensity FUS to CNS disease treatment has been investigated at a preclinical level, and it is expected that FUS treatment will become one of the most important novel techniques for the treatment of CNS diseases in the near future.


Subject(s)
Humans , Acoustics , Brain , Brain Neoplasms , Central Nervous System Diseases , Central Nervous System , Essential Tremor , Glioblastoma , Parkinson Disease , Skull , Trephining , Ultrasonics , Ultrasonography
16.
Yonsei Medical Journal ; : 165-172, 2016.
Article in English | WPRIM | ID: wpr-186108

ABSTRACT

PURPOSE: Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. MATERIALS AND METHODS: We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. RESULTS: During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. CONCLUSION: Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.


Subject(s)
Animals , Humans , Rats , Acetylcholine/metabolism , Alzheimer Disease , Antibodies, Monoclonal/pharmacology , Basal Forebrain/drug effects , Cholinergic Agents/administration & dosage , Cholinergic Neurons/drug effects , Fluorodeoxyglucose F18 , GABAergic Neurons/drug effects , Glucose/metabolism , Gyrus Cinguli/drug effects , Injections , Maze Learning , Motor Activity/physiology , Positron-Emission Tomography , Ribosome Inactivating Proteins, Type 1/pharmacology
17.
Yonsei Medical Journal ; : 817-823, 2016.
Article in English | WPRIM | ID: wpr-26895

ABSTRACT

Patients with neurofibromatosis type II will eventually succumb to bilateral deafness. For patients with hearing loss, modern medical science technology can provide efficient hearing restoration through a number of various methods. In this article, several hearing restoration methods for patients with neurofibromatosis type II are introduced.


Subject(s)
Humans , Cochlear Implantation , Deafness/etiology , Hearing Aids , Neurofibromatosis 2/complications
18.
Brain & Neurorehabilitation ; : 104-108, 2015.
Article in English | WPRIM | ID: wpr-17766

ABSTRACT

Intrathecal baclofen (ITB) therapy has been proven to reduce severe spasticity in cerebral palsy (CP). However, few results reported the objective gait pattern change after ITB bolus injection in adult ambulatory CP. We therefore evaluated observational and kinematic gait patterns at different ITB bolus injection doses. We performed a test trial of 3-day ITB bolus injections at doses of 12.5 microg, 25 microg, and 50 microg in ambulatory CP. We evaluated modified Ashworth scale, visual analogue scale, observational gait scale, and kinematic gait analysis after ITB bolus injection. Intrathecal administration of low-dose baclofen 25 microg was successfully used not only for the treatment of spasticity but also for the treatment of gait disturbance, whereas the higher dose baclofen 50 microg induced foot drop and deteriorated gait pattern. We experienced dose-dependent changes in gait pattern confirmed by the observational and kinematic gait assessments after ITB bolus injection in adult ambulatory CP.


Subject(s)
Adult , Humans , Baclofen , Cerebral Palsy , Foot , Gait , Muscle Spasticity
19.
Yonsei Medical Journal ; : 726-736, 2015.
Article in English | WPRIM | ID: wpr-77292

ABSTRACT

PURPOSE: As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. MATERIALS AND METHODS: We obtained [15O]H2O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. RESULTS: ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. CONCLUSION: Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Brain/diagnostic imaging , Cross-Sectional Studies , Deep Brain Stimulation/methods , Functional Laterality/physiology , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Severity of Illness Index , Subthalamic Nucleus/physiopathology
20.
Brain Tumor Research and Treatment ; : 103-107, 2015.
Article in English | WPRIM | ID: wpr-12920

ABSTRACT

BACKGROUND: The predominant treatment modality for meningioma is surgical resection. However, gamma knife radiosurgery is also an important treatment modality for meningioma that is small or cannot be completely removed because of its location. In this study, we evaluated the effectiveness and long-term results of radiosurgical treatment for meningioma in our institution. METHODS: We studied 628 patients (130 men and 498 women) who underwent gamma knife radiosurgery for intracranial meningioma, which is radiologically diagnosed, from Jan 2008 to Nov 2012. We included patients with single lesion meningioma, and followed up after 6 months with imaging, and then at 24 months with a clinical examination. Patients with high-grade meningioma or multiple meningiomas were excluded. We analyzed each of the factors associated with progression free survival. The median patient's age was 56.8 years. Maximal dosage was 27.8 Gy and marginal dosage was 13.9 Gy. RESULTS: The overall tumor control rate was 95%. Twenty-eight patients (4.4%) showed evidence of tumor recurrence. Ninety-eight patients (15%) developed peritumoral edema (PTE) after gamma-knife surgery; two of them (2%) underwent surgical resections due to PTE. Nine patients had craniotomy and tumor removal after gamma knife surgery. CONCLUSION: Gamma knife surgery for intracranial meningioma has proven to be a safe and effective treatment tool with successful long-term outcomes. Gamma knife radiosurgery can be especially effective in cases of remnant meningioma after surgical resection or where PTE is not present.


Subject(s)
Humans , Male , Craniotomy , Disease-Free Survival , Edema , Meningioma , Radiosurgery , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL